Datasheet for DDR2

Table of Contents

Contents Page
Table of Contents 1

1. General Electrical Specifications 2~3
2. Power-up and initialization Sequence 4~5
3. Input Electrical Characteristics and Operating Conditions 6~7
4. Overshoot/Undershoot Specification 8
5. Output Electrical Characteristics and Operating Conditions 9~10
6. Default Output V-I characteristics 11~12
7. AC Operating Specifications and Conditions 13
8. AC Parameters 14~22

1．General Electrical Specifications
【Absolute Maximum DC Rating】

Symbol	Parameter	Min．	Max．	Units
$\mathrm{V}_{\text {DD }}$	Supply voltage relative to $\mathrm{V}_{\text {SS }}$	-0.5	2.3	V
$\mathrm{~V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	Voltage on any pins relative to $\mathrm{V}_{\text {SS }}$	-0.5	2.3	V
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-55	+100	${ }^{\circ} \mathrm{C}$

【DC Operating Condition】

Symbol	Parameter	Min．	Typ．	Max．	Units	Notes
V_{DD}	Supply voltage	1.7	1.8	1.9	V	1
$\mathrm{~V}_{\text {REF }}$	I／O voltage reference	$0.49 \times \mathrm{V}_{\mathrm{DD}}$	$0.50 \times \mathrm{V}_{\mathrm{DD}}$	$0.51 \times \mathrm{V}_{\mathrm{DD}}$	V	2,3

Note：
1．$V_{D D}$ and $V_{D D Q}$ are tied to each other in the module．
2． $\mathrm{V}_{\text {REE }}$ is expected to equal $\mathrm{V}_{\mathrm{DDQ}} / 2$ of the transmitting device and to track variations in the DC level of the same．
3．Peak－to－peak AC noise on $\mathrm{V}_{\text {REF }}$ do not exceed ± 2 percent ．
【DC Operating Condition for EEPROM】

Parameter	Symbol	Min．	Max．	Units	Notes
Supply Voltage	$V_{\text {DD }}$ SPD	1.7	5.5	V	1
Input Voltage	$\mathrm{V}_{\text {IN }}$	0	$V_{\text {DD }}$ SPD	V	
＂H＂Input Voltage 1	V_{HH}	$0.7 \times \mathrm{V}_{\text {DD }} \mathrm{SPD}$	－	V	2
＂L＂Input Voltage 1	$\mathrm{V}_{\text {LL }}$	－	$0.3 \times \mathrm{VDDPD}$	V	2
＂H＂Input Voltage 2	$\mathrm{V}_{\mathrm{H} 2}$	$0.8 \times \mathrm{VDDPD}$	－	V	3
＂L＂Input Voltage 2	$\mathrm{V}_{\text {LL2 }}$	－	$0.2 \times \mathrm{V}$ DSPD	V	3
＂L＂Output Voltage 1	VoL1	－	0.4	V	4
＂L＂Output Voltage 2	VoL2	－	0.2	V	5
Operating Current	$\mathrm{l}_{\mathrm{CC} 1}$	－	2.0	mA	6
	$\mathrm{l}_{\mathrm{C} 2}$	－	0.5	mA	7
Standby Current	$\mathrm{I}_{\text {SB }}$	－	2.0	$\mu \mathrm{A}$	8
Input Leakage Current 1	$\mathrm{l}_{\text {L11 }}$	－1	1	$\mu \mathrm{A}$	9
Input Leakage Current 2	$\mathrm{l}_{\text {L12 }}$	－1	15	$\mu \mathrm{A}$	10
Output Leakage Current	Lo3	－1	1	$\mu \mathrm{A}$	11

Note：
1． $\mathrm{Ta}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
2． $2.5 \mathrm{~V} \leqq \mathrm{~V}_{\text {DD }} \mathrm{SPD} \leqq 5.5 \mathrm{~V}$
3． $1.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{DP}} \mathrm{SPD}<2.5 \mathrm{~V}$
4． $\mathrm{l}_{\mathrm{oL}}=3.0 \mathrm{~mA}, 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \mathrm{SPD} \leq 5.5 \mathrm{~V}(\mathrm{SDA})$
5． $1 \mathrm{OL}=0.7 \mathrm{~mA}, 1.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{DP}} \mathrm{SPD}<2.5 \mathrm{~V}(\mathrm{SDA})$
6． $\mathrm{V}_{\mathrm{DD}} \mathrm{SPD}=5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{scL}}=400 \mathrm{KHz}, \mathrm{t}_{\mathrm{wR}}=5 \mathrm{~ms}$ ，Byte Write，Page Write
7．$V_{D D} S P D=5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{SCL}}=400 \mathrm{KHz}, \mathrm{t}_{\mathrm{WR}}=5 \mathrm{~ms}$ ，Random Read，Current Read， Sequential Read
8． $\mathrm{V}_{\mathrm{DD}} \mathrm{SPD}=5.5 \mathrm{~V}, \mathrm{SDA}, \mathrm{SCL}=\mathrm{V}_{\mathrm{DD}} \mathrm{SPD}, \mathrm{A}, \mathrm{A} 1, \mathrm{~A} 2=\mathrm{GND}, \mathrm{WP}=\mathrm{GND}$
9． $\mathrm{V}_{\mathrm{IV}}^{\mathrm{DD}}=0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DD}} \mathrm{SPD}$（A0，A1，A2，SCL）
10．$V_{\text {IN }}=0 V \sim V_{P D} S P D$（WP）
11． $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \sim \mathrm{~V}_{\text {DD }}$ SPD（SDA）

【Serial Interface Timing for EEPROM】

Parameter	Symbol	Fast Mode		Standard Mode		Units
Clock Frequency	$\mathrm{f}_{\text {SCL }}$	－	400		100	$\mu \mathrm{s}$
Clock High Period	thigh	0.6	－	4.0	－	$\mu \mathrm{s}$
Clock Low Period	tLow	1.2		4.7	－	$\mu \mathrm{s}$
SDA Rise Time	t_{R}	－	0.3	－	1	$\mu \mathrm{s}$
SDA Fall Time	t_{F}	－	0.3	－	0.3	$\mu \mathrm{s}$
Start Condition Setup Time	$\mathrm{t}_{\text {su：STA }}$	0.6	－	4.7	－	$\mu \mathrm{s}$
Start Condition Hold Time	thd：Sta	0.6		4.0	－	$\mu \mathrm{s}$
Input Data Setup time	tsu：Dat	50		50	－	ns
Input Data Hold time	thd：dat	0	－	0	－	ns
Output Data Delay time	$t_{\text {PD }}$	0.1	0.9	0.2	3.5	$\mu \mathrm{s}$
Output Data Hold time	t_{DH}	0.1	－	0.2	－	$\mu \mathrm{s}$
Stop Condition Setup Time	$\mathrm{t}_{\text {su：Sto }}$	0.6	－	4.7	－	$\mu \mathrm{s}$
Bus Idle	$\mathrm{t}_{\text {B：FREE }}$	1.2	－	4.7	－	$\mu \mathrm{s}$
Write Cycle Time	twr	－	5	－	5	ms
Noise Spike Width（SDA \＆SCL）	t_{1}	－	0.1	－	0.1	$\mu \mathrm{s}$
WP Hold Time	thd：wp	0.0	－	0.0	－	ns
WP Setup Times	tsu：wp	0.1		0.1	－	$\mu \mathrm{s}$
WP High Period	trigh：wp	1.0	－	1.0	－	$\mu \mathrm{S}$

Note：Fast mode and Standard mode differ only in operation frequency．Operations performed at 100 kHz are considered in＂Standard－mode＂，while those conducted at 400kHz are in＂Fast－mode＂． Please note that these clock frequencies are maximum values．At lower power supply voltage it is difficult to operate at high speeds． The EEPROM can operate at 400 kHz ，between 2.5 V and 5.5 V ，and at 100 kHz from $1.7 \mathrm{~V}-5.5 \mathrm{~V}$ ．

【ODT DC Electrical Characteristics】

Symbol	Parameter	Min．	Typ．	Max．	Units	Notes
$\mathrm{R}_{\text {TT1（EFF）}}$	RTT effective impedance value for 75Ω setting $\operatorname{EMR}(A 6, A 2)=0,1$	60	75	90	Ω	1
$\mathrm{R}_{\text {TT2（EFF）}}$	RTT effective impedance value for 150Ω setting $\operatorname{EMR}(A 6, A 2)=1,0$	120	150	180	Ω	1
$\mathrm{R}_{\text {TT3 }}$（EFF）	RTT effective impedance value for 50Ω setting $\operatorname{EMR}(A 6, A 2)=1,1$	40	50	60	Ω	1
$\Delta \mathrm{VM}$	Deviation of VM with respect to $\mathrm{V}_{\mathrm{DD}(\mathrm{Q})} / 2$	－6	－	＋6	\％	2

1．$R_{T T 1(E F F)}, R_{T T 2(\text {（EFF）}}$ ，and $R_{T T 3(E F F)}$ are determined by separately applying $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})$ and $\mathrm{V}_{\mathrm{IL}}(\mathrm{DC})$ to test pin separately，and then measuring current， $\mathrm{I}\left(\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})\right)$ ，and $\mathrm{I}\left(\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})\right)$ ，respectively．

$$
R_{\mathrm{TT}}=\frac{\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})-\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})}{\mathrm{I}\left(\mathrm{~V}_{\mathrm{IH}}(\mathrm{AC})\right)-\mathrm{I}\left(\mathrm{~V}_{\mathrm{IL}}(\mathrm{AC})\right)}
$$

2．Measure voltage（VM）at tested ball with no load．

$$
\Delta \mathrm{VM}=\left(\frac{2 \times \mathrm{VM}}{\mathrm{~V}_{\mathrm{DD}(\mathrm{Q})}}-1\right) \times 100
$$

2. Power-up and initialization Sequence

The following sequence is required for power-up and initialization, as shown in Chart1:

1. While applying power, CKE is maintained to be below $0.2 \times \mathrm{V}_{D D}$ during power ramp to ensure the outputs remain disabled (High-Z) and ODT off ($\mathrm{R}_{T T}$ is also High-Z). The V_{DD} Voltage ramp from 300 mV to V_{DD} Min. must take no longer than 200 ms . Once the ramping of the supply voltages is complete, the supply voltage specifications provided in the DC operating conditions (SSTL_1.8), prevail.
2. During power-up, the following conditions may exist and must be met:

- The voltage levels on all pins other than V_{DD} and V_{SS} must be less than or equal to V_{DD} on one side, and must be greater than or equal to V_{SS} on the other side.
- $V_{D D}$ voltage ramp time must be no greater than 200 ms from when $V_{D D}$ ramps from 300 mV to V_{DD} Min.
- $V_{\text {REF }}$ tracks $V_{D D} \times 0.5 . V_{\text {REF }}$ must be within $+/-300 \mathrm{mV}$ with respect to $\mathrm{V}_{\mathrm{DD}} / 2$ during supply ramp time.
- $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}} \geq \mathrm{V}_{\mathrm{REF}}$ must be met at all times.

3. Start clock and maintain stable condition.
4. For the minimum of 200 us after stable power and clock (CK, CK\#), apply NOP or DESELECT commands, then take CKE HIGH. Once CKE transitions to a high level, it must stay HIGH for the duration of the initialization sequence.
5. Wait minimum of 400 ns then issue a PRECHARGE ALL command.
6. Issue an EMRS command to EMR(2). (To issue EMRS command to EMR(2), provide LOW to BA0 and BA2, HIGH to BA1.)
7. Issue an EMRS command to EMR(3). (To issue EMRS command to EMR(3), provide LOW to BA2, HIGH to BA0 and BA1.)
8. Issue EMRS to enable DLL. (To issue DLL Enable command, provide LOW to A0, HIGH to BA0 and LOW to B A1-BA2 and A13-A15. And A9=A8=A7=LOW must be used when issuing this command.)
9. Issue a Mode Register Set command for DLL reset. (To issue DLL Reset command, provide HIGH to A8 and LOW to BA0-BA2, and A13-A15.)
10. Issue a precharge all command.
11. Issue 2 or more auto-refresh commands.
12. Issue a MRS command with LOW to A8 to initialize device operation. (i.e. to program operating parameters without resetting the DLL.)
13. At least 200 clocks after the DLL RESET, execute OCD Calibration (Off Chip Driver impedance adjustment). If OCD calibration is not used, EMRS to $\operatorname{EMR}(1)$ to set OCD Calibration Default (A9=A8=A7=HIGH) followed by EMRS to EMR(1) to exit OCD Calibration Mode (A9=A8=A7=LOW) must be issued with other operating parameters of $\operatorname{EMR}(1)$.
14. The DDR2 SDRAM is now ready for normal operation.

Symbol

DDR2-1066
Min

Min ${ }^{\text {Max }}$ DDR2-667
Min Max DDR2-533
Min Max DDR2-400 Min Max Units 1.8758 $0.48 \quad 0.52$ 2.58 38 $3.75 \quad 8$ $0.48 \quad 0.52$ 0.48 Refer to the table of the Timing parameters by speed grade.

2	-	2	-	2	-	2	-	2	-	$n C K$
75	-	75	-	75	-	75	-	75	-	n
105	-	105	-	105	-	105	-	105	-	ns
127.5	-	127.5	-	127.5	-	127.5	-	127.5	-	ns
195	-	195	-	195	-	195	-	195	-	ns
327.5	-	327.5	-	327.5	-	327.5	-	327.5	-	ns
15	-	15	-	15	-	15	-	15	-	nn
20	-	18.75	-	18	-	17.5	-	15	-	ns

3. Input Electrical Characteristics and Operating Conditions

< Input DC Logic Levels >

Symbol	Parameter	Min.	Max.	Units
$\mathrm{V}_{\text {IH }}(\mathrm{DC})$	Input Logic High	$\mathrm{V}_{\text {REF }}+0.125$	$\mathrm{~V}_{\text {DD }}+0.3$	V
$\mathrm{~V}_{\text {IL }}(\mathrm{DC})$	Input Logic Low	-0.3	$\mathrm{~V}_{\text {REF }}-0.125$	V

< Input AC Logic Levels >

| Symbol | Parameter | DDR2-400/533
 Min | | DDR2-667/800/1066 | | Min | Max |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Units

Note: Refer to the AC overshoot/undershoot specification for the $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})$ Max and $\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})$ Min values.
< Figure 1: DDR2 Input Signal Reference >

Note: The values in the above figure from the nominal DDR2-400/533 values $\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDQ}}=1.8 \mathrm{~V}\right)$.

< Differential Input Logic Levels >

Symbol	Parameter	Min	Max	Units	Notes
$\mathrm{V}_{\text {IN }}(\mathrm{DC})$	DC Input Signal Voltage	-300	$V_{D D}+300$	mV	1,6
$V_{10}(\mathrm{DC})$	DC Differential Input Voltage	250	$V_{\text {D }}$	mV	2,6
$V_{\text {ID }}(\mathrm{AC})$	AC Differential Input Voltage	500	$V_{\text {DD }}$	mV	3,6
$V_{\text {IX }}(\mathrm{AC})$	AC Differential Cross-point Voltage	$0.5 \times V_{\text {DD }}-175$	$0.5 \times V_{\text {DD }}+175$	mV	4
$\mathrm{V}_{\mathrm{MP}}(\mathrm{DC})$	Input Midpoint Voltage	850	950	mV	5

Note:

1. $\mathrm{V}_{\mathrm{IN}}(\mathrm{DC})$ specifies the allowable DC execution of each input of differential pair.
2. $\mathrm{V}_{I D}(\mathrm{DC})$ specifies the input differential voltage $\left|\mathrm{V}_{T R}-\mathrm{V}_{\mathrm{CP}}\right|$ required for switching, where $\mathrm{V}_{T R}$ is the true input level and $V_{C P}$ is the complementary input level. The minimum value is equal to $V_{I H}(D C)-V_{I L}(D C)$.
3. $V_{T R}$ is the true input level and $V_{C P}$ is the complementary input level. The minimum value is equal to $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})-\mathrm{V}_{\mathrm{IL}}(A C)$.
4. The typical value of $\mathrm{V}_{I X}(\mathrm{AC})$ is expected to be about $0.5 \times \mathrm{V}_{\mathrm{DD}}$ of the transmitting device and $\mathrm{V}_{I X}(\mathrm{AC})$ is expected to track variations in $\mathrm{V}_{\mathrm{DD}} . \mathrm{V}_{\mathrm{IX}}(\mathrm{AC})$ indicates the voltage at which differential input signals must cross.
5. $\mathrm{V}_{\mathrm{MP}}(\mathrm{DC})$ specifies the input differential common mode voltage $\left(\mathrm{V}_{T R}+\mathrm{V}_{\mathrm{CP}}\right) / 2$ where $\mathrm{V}_{T R}$ is the true input level and V_{CP} is the complementary input. $\mathrm{V}_{\mathrm{MP}}(\mathrm{DC})$ is expected to be approximately $0.5 \times \mathrm{V}_{\mathrm{DD}}$.
6. $V_{D D}+300 \mathrm{mV}$ allowed, but the maximum value is less than 1.9 V is strongly recommended.

Figure 2: DDR2 Differential Input Signal Reference >

Note: The values in the above left side of figure when $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDQ}}=1.8 \mathrm{~V}$.

4. Overshoot/Undershoot Specification

< DDR2 Over/Undershoot Specification for control and address pins ${ }^{1}$ >

Parameter	DDR2-400	DDR2-533	DDR2-667	DDR2-800	DDR2-1066	Units
Maximum peak amplitude allowed for overshoot area	0.50	0.50	0.50	0.50	0.50	V
Maximum peak amplitude allowed for undershoot area	0.50	0.50	0.50	0.50	0.50	V
Maximum overshoot area above $V_{D D}$ (see Figure3)	1.33	1.00	0.80	0.66	0.66	V-ns
Maximum undershoot area below V_{SS} (see Figure4)	1.33	1.00	0.80	0.66	0.66	V-ns

Note:

1. The control and address pins are followings; An, BAn, /CS, /RAS, /CAS, /WE, CKE, \& ODT.
< DDR2 Over/Undershoot Specification for Clock, Data, Strobe, and Mask pins ${ }^{1}$ >

| Parameter | DDR2-400 | DDR2-533 | DDR2-667 | DDR2-800 | DDR2-1066 | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum peak amplitude allowed for | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | V |
| overshoot area | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | V |
| Maximum peak amplitude allowed for
 undershoot area | 0.38 | 0.28 | 0.23 | 0.23 | 0.23 | V-ns |
| Maximum overshoot area above $\mathrm{V}_{\text {DD }}$
 (see Figure3) | 0.38 | | | | | |
| Maximum | | | | | | |
| undershoot area below $\mathrm{V}_{\text {SS }}$
 (see Figure4) | 0.38 | 0.28 | 0.23 | 0.23 | 0.23 | V-ns |

Note:

1. The control and address pins are followings; DQ, DQS, DM and those complementary signals.
< Figure 3: Overshoot >

< Figure 4: Undershoot >

Maximum amplitude
Time (ns)

5. Output Electrical Characteristics and Operating Conditions

< Differential AC Output Logic Levels >

Symbol	Parameter	Min	Max	Units	Notes
Vox (AC)	AC Output Crosspoint Voltage	$0.5 \times \mathrm{VDD}-0.125$	$0.5 \times$ VDD +0.125	V	1

Note:

1. The typical value of $\mathrm{V}_{\mathrm{OX}}(\mathrm{AC})$ is expected to be about $0.5 \times \mathrm{V}_{\mathrm{DD}}$ of the transmitting device and $\mathrm{V}_{\mathrm{OX}}(\mathrm{AC})$ is expected to track variations in V_{DD}. $\mathrm{V}_{\mathrm{OX}}(\mathrm{AC})$ indicates the voltage at which differential output signals must cross.
< Figure 5: Differential waveform >

$V_{S S}$
< Output DC current drive >

Symbol	Parameter	Value	Units	Notes
$\mathrm{I}_{\mathrm{OH}}(\mathrm{DC})$	Output Minimum Source DC Current	-13.4	mA	$1,3,4$
$\mathrm{I}_{\mathrm{OL}(\mathrm{DC})}$	Output Minimum Sink DC Current	13.4	mA	$2,3,4$

Note:

1. For $\mathrm{I}_{\mathrm{OH}}(\mathrm{DC}) ; \mathrm{V}_{\mathrm{DD}(\mathrm{Q})}=1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1,420 \mathrm{mV} .\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{DD}(\mathrm{Q})}\right) / I_{\mathrm{OH}}$ must be less than 21Ω for values of $\mathrm{V}_{\text {OUT }}$ between $\mathrm{V}_{\mathrm{DD}(\mathrm{Q})}$ and $\mathrm{V}_{\mathrm{DD}(\mathrm{Q})}-280 \mathrm{mV}$.
2. For $\mathrm{I}_{\mathrm{OL}}(\mathrm{DC}) ; \mathrm{V}_{\mathrm{DD}(\mathrm{Q})}=1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=280 \mathrm{mV} . \mathrm{V}_{\mathrm{OUT}} / \mathrm{I}_{\mathrm{OL}}$ must be less than 21Ω for values of $\mathrm{V}_{\mathrm{OUT}}$ between 0 V and 280 mV .
3. The DC value of $\mathrm{V}_{\text {REF }}$ applied to the receiving device is set to V_{TT}.
4. The values of $\mathrm{I}_{\mathrm{OH}}(\mathrm{DC})$ and $\mathrm{I}_{\mathrm{L}}(\mathrm{DC})$ are based on the conditions given in Notes 1 and 2. They are used to test device drive current capability to ensure V_{IH} MIN plus a noise margin and V_{L} MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating point along a 21Ω load line to define a convenient driver current for measurement.
< DC Output Logic Levels >

Symbol	Parameter	Min.	Max.	Units	Notes
$\mathrm{V}_{\mathrm{OH}}(\mathrm{DC})$	Output Logic High	$\mathrm{V}_{\mathrm{DD}}-0.280$	$\mathrm{~V}_{\mathrm{DD}}$	V	1
$\mathrm{~V}_{\mathrm{OL}}(\mathrm{DC})$	Output Logic Low	V_{SS}	$\mathrm{V}_{\mathrm{SS}}-0.280$	V	2
	Note:				

Note:

1. $V_{D D}$ and $V_{D D Q}$ are tied to each other in the module.
2. V_{SS} and $\mathrm{V}_{\mathrm{SSQ}}$ are tied to each other in the module.
< OCD Default Characteristics>

Parameter	Min.	Typ.	Max.	Units	Notes
Output Impedance	12.6	18	23.4	Ω	1,2
Output impedance step size for	0	-	1.5	Ω	6
OCD calibration	0	-	4	Ω	$1,2,3$
Pull-up and pull-down mismatch	1.5	-	5	$\mathrm{~V} / \mathrm{nS}$	$1,4,5$
Output slew rate					

Note:

1. Absolute specifications: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}(\mathrm{Q})}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$.
2. Impedance measurement conditions for output source $D C$ current: $\mathrm{V}_{\mathrm{DD}(Q)}=1.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{OUT}}=1420 \mathrm{mV}$; $\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{DD}(\mathrm{Q})}\right) / I_{\mathrm{OH}}$ is less than 23.4Ω for values of $\mathrm{V}_{\text {OUT }}$ between $\mathrm{V}_{\mathrm{DD}(\mathrm{Q})}$ and $\left(\mathrm{V}_{\mathrm{DD}(\mathrm{Q})}-280 \mathrm{mV}\right)$. The impedance measurement condition for output sink DC current: $\mathrm{V}_{\mathrm{DD}(\mathrm{Q})}=1.7 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=280 \mathrm{mV} ; \mathrm{V}_{\text {OUT }} / \mathrm{l}_{\mathrm{OL}}$ is less than 23.4Ω for values of $\mathrm{V}_{\text {OUT }}$ between 0 V and 280 mV .
3. Mismatch is an absolute value between pull-up and pull-down; both are measured at the same temperature and voltage.
4. Output slew rate for falling and rising edges is measured between $\mathrm{V}_{T T}-250 \mathrm{mV}$ and $\mathrm{V}_{T T}+250 \mathrm{mV}$ for single-ended signals. For differential signals (DQS, /DQS), output slew rate is measured between DQS - /DQS $=-500 \mathrm{mV}$ and $/ \mathrm{DQS}-\mathrm{DQS}=500 \mathrm{mV}$. Output slew rate is guaranteed by design.
5. The absolute value of the slew rate as measured from $\mathrm{V}_{\mathrm{IL}}(\mathrm{DC}) \mathrm{MAX}$ to V_{IH} (DC) MIN is equal to or greater than the slew rate as measured from $\mathrm{V}_{\mathrm{IL}}(\mathrm{AC}) \mathrm{MAX}$ to $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC}) \mathrm{MIN}$. This is guaranteed by design and characterization.
6. This represents the step size when the OCD is near 18Ω at nominal conditions across all process corners/variations and represents only the DRAM uncertainty. A 0Ω value(no calibration) can only be achieved if the OCD impedance is $18+/-0.75 \Omega$ under nominal conditions.
< Figure 6: Reference point >

6. Default Output V-I characteristics

< Full Strength Default Pull-Down Driver Characteristics >

Voltage $\mathbf{(V)}$	Min. $\mathbf{(2 3 . 4 \Omega)}$	Nominal Default Low (18.0Q)	Nominal Default High (18.0Q)	Max. $(\mathbf{1 2 . 6 \Omega})$
0.2	8.5	11.3	11.8	15.9
0.3	12.1	16.5	16.8	23.8
0.4	14.7	21.2	22.1	31.8
0.5	16.4	25.0	27.6	39.7
0.6	17.8	28.3	32.4	47.7
0.7	18.6	30.9	36.9	55.0
0.8	19.0	33.0	40.9	62.3
0.9	19.3	34.5	44.6	69.4
1.0	19.7	35.5	47.7	75.3
1.1	19.9	36.1	50.4	80.5
1.2	20.0	36.6	52.6	84.6
1.3	20.1	36.9	54.2	87.7
1.4	20.2	37.1		55.9
1.5	20.3	37.4	57.1	90.8
1.6	20.4	37.6		58.4
1.7	20.6	37.7		59.9
1.8		37.9		90.9
1.9				

Figure 7: Full Strength Pull-Down Current

< Full Strength Default Pull-Up Driver Characteristics >

Voltage $\mathbf{(V)}$	Min. $\mathbf{(2 3 . 4 \Omega})$	Nominal Default Low (18.0Q)	Nominal Default High (18.0Q)	Max. $(\mathbf{1 2 . 6 \Omega})$
0.2	-8.5	-11.1	-11.8	-15.9
0.3	-12.1	-16.0	-17.0	-23.8
0.4	-14.7	-20.3	-22.2	-31.8
0.5	-16.4	-24.0	-27.5	-39.7
0.6	-17.8	-27.2	-32.4	-47.7
0.7	-18.6	-29.8	-36.9	-55.0
0.8	-19.0	-31.9	-40.8	-62.3
0.9	-19.3	-33.4	-44.5	-69.4
1.0	-19.7	-34.6	-47.7	-75.3
1.1	-19.9	-35.5	-50.4	-80.5
1.2	-20.0	-36.2	-52.5	-84.6
1.3	-20.1	-36.8	-54.2	-87.7
1.4	-20.2	-37.2	-55.9	-90.8
1.5	-20.3	-37.7	-57.1	-92.9
1.6	-20.4	-38.0	-58.4	-94.9
1.7	-20.6	-38.4	-59.6	-97.0
1.8		-38.6		-60.8
1.9				-99.1

Figure 8: Full Strength Pull-Up Current

7. AC Operating Specifications and Conditions

< DDR2 Standard Speed Bin Table ${ }^{1}$ >

Speed		DDR2-400	DDR2-533	DDR2-667		DDR2-800		DDR2-1066	Units	Notes
CL-nRCD-nRP		3-3-3	4-4-4	4-4-4	5-5-5	5-5-5	6-6-6	7-7-7		
Parameter	Symbol	Min								
ACT to READ or WRIE delay	tRCD	15	15	12	15	12.5	15	13.125	ns	3
PRECHARGE period	${ }^{\text {t }} \mathrm{RP}$	15	15	12	15	12.5	15	13.125	ns	2,3
ACT to ACT/REF delay	${ }^{\text {t }} \mathrm{RC}$	55	60	57	60	57.5	60	58.125	ns	3
ACT to PRECHARGE delay	${ }^{\text {t RAS }}$	40	45	45	45	45	45	45	ns	3,4
Clock cycle time (CL=3)	${ }^{\text {t }} \mathrm{CK}$ (Avg)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	ns	5
Clock cycle time (CL=4)	${ }^{\text {t }} \mathrm{CK}$ (Avg)	5.0	3.75	3.0	3.75	3.75	3.75	3.75	ns	5
Clock cycle time (CL=5)	${ }^{\mathrm{t}} \mathrm{CK}$ (Avg)			3.0	3.0	2.5	3.0	3.0	ns	5,6
Clock cycle time (CL=6)	${ }^{\mathrm{t}} \mathrm{CK}$ (Avg)			/A			2.5	2.5	ns	5
Clock cycle time (CL= 7)	${ }^{\text {t }} \mathrm{CK}$ (Avg)			N/A				1.875	ns	5

Note: note 1 applies to the entire table.

1. The speed bin table is based on JEDEC standard (JESD79-2F \& 208), Support CL depends on the DRAM Grade.
2. When a single-bank PRECHARGE command is issued, tRP timing applies. tRPA timing applies when the Precharge (ALL) command is issued, regardless of the number of banks open. For 8 -bank devices ($\geq 1 \mathrm{~Gb}$), tRPA MIN = tRP MIN + ${ }^{\text {t CK }}$ (Avg).
3. For these parameters, the DDR2 device is characterized and verified to support tPARAM(nCK) $=$ RU(tPARAM / tCK(Avg), where RU stands for round up), which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support ${ }^{\mathrm{R} R P}(\mathrm{nCK})=\mathrm{RU}\left({ }^{(R R P} / \operatorname{tCK}(\mathrm{Avg})\right.$), which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2-667 5-5-5, of which ${ }^{\mathrm{t} R P}=15 \mathrm{~ns}$, the device will support $\mathrm{t}^{\mathrm{R} P}(\mathrm{nCK})=\mathrm{RU}\left(\mathrm{t}^{2} \mathrm{RP} / \mathrm{t}^{\mathrm{t}} \mathrm{K}(\mathrm{Avg})\right)=5$, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at $\mathrm{Tm}+5$ is valid even if ($\mathrm{Tm}+5$ Tm) is less than 15 ns due to input clock jitter.
4. All modes support tRAS MAX $=70,000 \mathrm{~ns}$.
5. All modes except DDR2-1066 support ${ }^{\text {C }} \mathrm{CK}($ Avg $) \mathrm{MAX}=8 \mathrm{~ns}$. Only DDR2-1066 supports up to 7.5 ns .
6. DDR2-800 CL $=6$ supported DRAM (SKHynix DRAM Speed Grade: $S 6$) is not guaranteed to operate under DDR2-800 CL $=5$. Its frequency must be set at 333 MHz .

8.AC Parameters

< General notes, which may apply for all AC parameters

1. The following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester.

The output timing reference voltage level for single ended signals is the crosspoint with V_{TT}. The output timing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. /DQS) signal.

2. Tests for AC timing and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and the operation of the device are warranted for the full voltage range specified. ODT is disabled for all measurements that are not ODT-specific.
3. Slew Rate Measurement Levels
a. Output slew rate for falling and rising edges is measured between $\mathrm{V}_{T T}-250 \mathrm{mV}$ and $\mathrm{V}_{T T}+250 \mathrm{mV}$ for single ended signals. For differential signals (e.g. DQS - /DQS) output slew rate is measured between DQS - /DQS $=-500 \mathrm{mV}$ and DQS $-/ \mathrm{DQS}=+500 \mathrm{mV}$. Output slew rate is guaranteed by design, but is not tested on each device.
b. Input slew rate for single ended signals is measured from DC-level to AC-level: from $\mathrm{V}_{\text {REF }}-125 \mathrm{mV}$ to $V_{\text {REF }}+250 \mathrm{mV}$ for rising edges and from $\mathrm{V}_{\text {REF }}+125 \mathrm{mV}$ and $\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$ for falling edges.

For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - /CK =-250 mV to CK - /CK $=+500 \mathrm{mV}(+250 \mathrm{mV}$ to -500 mV for falling edges).
c. V_{ID} is the magnitude of the difference between the input voltage on CK and the input voltage on /CK, or between DQS and /DQS for differential strobe.
4. Output slew rate is characterized under the test conditions as shown in the figure 6.
5. The AC and DC input level specifications are as defined in the SSTL_18 standard (that is, the receiver will effectively switch as a result of the signal crossing the AC input level and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level).
6. All voltages referenced to VSS.
7. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester correlation.

< Timing Parameters by Speed Grade - DDR2-400/533 (1) >

Speed			DDR2-400		DDR2-533		Units	Notes
	Parameter	Symbol	Min	Max	Min	Max		
$\begin{aligned} & \text { 등 } \\ & \text { 응 } \end{aligned}$	Clock cycle time	${ }^{\text {TCK }}$ (Avg)	5.0	8.0	3.75	8.0	ns	1,2
	CK HIGH-level width	${ }^{\text {t }} \mathrm{CH}$	$\begin{aligned} & \operatorname{Min}=0.45 \\ & \operatorname{Max}=0.55 \end{aligned}$				nCK	3
	CK LOW-level width	${ }^{\text {CHL}}$						
	Half clock period	'HP	$\begin{gathered} \text { Min }=\text { lesser of }{ }^{\mathrm{t}} \mathrm{CH} \operatorname{Min} \text { and }{ }^{\mathrm{t}} \mathrm{CL} \text { Min } \\ \text { Max }=\mathrm{N} / \mathrm{A} \end{gathered}$				nCK	
	DQS output access time from CK or /CK	${ }^{\text {t }}$ DQSCK	-500	500	-450	450	ps	
	DQS Read preamble	tRPRE	0.9	1.1	0.9	1.1	nCK	4
	DQS Read postamble	tRPST	0.4	0.6	0.4	0.6	nCK	4
	CK/CK\# to DQS Low-Z	${ }^{\text {tLZ }}$ (DQS)	$\begin{aligned} & \operatorname{Min}={ }^{\dagger} \mathrm{AC} \operatorname{Min} \\ & \mathrm{Max}={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Max} \end{aligned}$				ps	5,6
	DQS rising edge to CK rising edge	${ }^{\text {t }}$ DQSS	-0.25	0.25	0.35	0.25	nCK	
	DQS input-high pulse width	${ }^{\text {t }}$ DQSH	$\begin{aligned} & \operatorname{Min}=0.35 \\ & \operatorname{Max}=\mathrm{N} / \mathrm{A} \end{aligned}$				nCK	
	DQS input-low pulse width	${ }^{\text {t }}$ DQSL					nCK	
	DQS falling to CK rising: setup time	${ }^{\text {t }}$ DSS	$\begin{aligned} \operatorname{Min} & =0.2 \\ M a x & =N / A \end{aligned}$				nCK	
	DQS falling from CK rising: hold time	${ }^{\text {t }}$ DSH					nCK	
	DQS write preamble	'WPRE	0.35	-	0.35	-	nCK	
	DQS write postamble	${ }^{\text {t }}$ WPST	0.4	0.6	0.4	0.6	nCK	7
	WRTE command to first DQS transition		$\begin{aligned} \text { Min } & =W L+{ }^{\text {t}} \text { DQSS Min } \\ M a x & =W L+{ }^{\text {t}} \text { DQSS } \operatorname{Max} \end{aligned}$				nCK	
	DQ output access time from CK/CK\#	${ }^{\text {t }} \mathrm{AC}$	-600	600	-500	500	ps	
	DQS-DQ skew, DQS to last DQ valid, per group, per access	${ }^{\text {t }}$ DQSQ	-	350	-	300	ps	8
	DQ hold from next DQS strobe	${ }^{\text {toh }}$	-	450	-	400	ps	9
	DQ-DQS hold, DQS to first DQ not valid	${ }^{\text {t }} \mathrm{QH}$	$\begin{gathered} \mathrm{Min}={ }^{\mathrm{t}} \mathrm{HP} \times 1000-\mathrm{tQHS} \\ \mathrm{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$				ps	8
	CK/CK\# to DQ, DQS High-Z	thZ	$\begin{gathered} \operatorname{Min}=\mathrm{N} / \mathrm{A} \\ \mathrm{Max}={ }^{\mathrm{t}} \mathrm{AC} \mathrm{Max} \end{gathered}$				ps	5,10
	CK/CK\# to DQ Low-Z	tZ(DQ)	$\begin{gathered} \mathrm{Min}=2 x^{\mathrm{t}} \mathrm{AC} \operatorname{Min} \\ \mathrm{Max}={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Max} \end{gathered}$				ps	5,11
	Data valid output window	DVW	$\begin{gathered} \mathrm{Min}={ }^{\mathrm{t}} \mathrm{QH}-{ }^{\mathrm{t}} \mathrm{DQSQ} \\ \mathrm{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$				ps	8
	DQ and DM input setup time(differential strobe)	${ }^{\text {t DS _ Diff(base) }}$	150	-	100	-	ps	1,12,13,15
	DQ and DM input hold time(differential strobe)	tDH_Diff(base)	275	-	225	-	ps	1,12,14,15
	DQ and DM input setup time(single-ended strobe)	${ }^{\text {t }}$ DS(base)	25	-	-25	-	ps	1,12,15,16
	DQ and DM input hold time(single-ended strobe)	${ }^{\text {² }}$ DH(base)	25	-	-25	-	ps	1,12,15,17
	DQ and DM input pulse width	${ }^{\text {t }}$ IPW	0.35	-	0.35	-	nCK	
	Input setup time	IS	350	-	250	-	ps	1,12,19
	Input hold time	${ }^{\text {t }} \mathrm{H}$	475	-	375	-	ps	1,12,19
	Input pulse width	IPW	0.6	-	0.6	-	nCK	
	Activate to Activate delay same bank	'RC	55	-	60	-	ns	20,21
	Activate to Read or Write delay	${ }^{\text {tr }}$ RCD	15	-	15	-	ns	
	Activate to Precharge delay	${ }^{\text {tRAS }}$	40	70,000	45	70,000	ns	22,23
	Precharge period	tRP	15	-	15	-	ns	24

< Timing Parameters by Speed Grade - DDR2-400/533 (2) >

Speed				DDR2-400		DDR2-533		Units	Notes
Parameter			Symbol	Min	Max	Min	Max		
	Precharge All period	<1Gb	${ }^{\text {t RPA }}$	15	-	15	-	ns	24
		$\geq 1 \mathrm{~Gb}$		20	-	18.75	-		
	Activate to Activate delay different bank	x4, x8	${ }^{\text {t }}$ RRD	7.5	-	7.5	-	ns	25
		x16		10	-	10	-		
	4-bank activate period ($\geq 1 \mathrm{~Gb}$)	x4, x8	${ }^{\text {t }}$ FAW	37.5	-	37.5	-	ns	
		x16		50	-	50	-		
	Internal Read to Precharge delay		${ }^{\text {t RTP }}$	7.5	-	7.5	-	ns	22,25
	/CAS to /CAS delay		${ }^{\text {t }} \mathrm{CCD}$	2	-	2	-	nCK	
	Write recovery time		${ }^{\text {t }}$ WR	15	-	15	-	ns	
	Write Auto-precharge recovery + precharge time		${ }^{\text {t }}$ DAL	$\begin{gathered} \operatorname{Min}={ }^{t} W R \operatorname{Min}+{ }^{t} R P M i n \\ M a x=N / A \end{gathered}$				nCK	26
	Internal Write to Read delay		${ }^{\text {t WTR }}$	10	-	7.5	-	ns	25
	Mode register set command cycle time		${ }^{\text {t }} \mathrm{MRD}$	2	-	2	-	nCK	
$\begin{aligned} & \text { ᄃ } \\ & \text { di } \\ & \text { d } \\ & \boldsymbol{x} \end{aligned}$	Refresh to Activate or to Refresh interval	256Mb	${ }^{\text {t RFC }}$	75	-	75	-	ns	27
		512 Mb		105	-	105	-		
		1 Gb		127.5	-	127.5	-		
		2Gb		195	-	195	-		
		4Gb		327.5	-	327.5	-		
	Average periodic refresh ($\left.0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {CASE }} \leq 85^{\circ} \mathrm{C}\right)$		${ }^{\text {t }}$ REFI	7.8	-	7.8	-	ns	27
	Average periodic refresh ($85^{\circ} \mathrm{C}<\mathrm{T}_{\text {CASE }} \leq 95^{\circ} \mathrm{C}$)			3.9	-	3.9	-		
	Clocks remains ON after CKE asynchronously drops LOW		${ }^{\text {t }}$ DELAY	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{IS}+{ }^{\mathrm{t}} \mathrm{CK}+{ }^{\mathrm{t}} \mathrm{IH} \\ \operatorname{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$				ns	
	Exit Self Refresh to non-Read command		${ }^{\text {t }}$ XSNR	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{RFC} \operatorname{Min}+10 \\ \operatorname{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$				ns	
	Exit Self Refresh to Read command		${ }^{\text {t }}$ XSRD	200	-	200	-	nCK	
$\begin{aligned} & \text { Y } \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{1} \\ & 3 \\ & 0 \\ & 0 \end{aligned}$	Exit active powerdown to Read command	MR12 =0	${ }^{t}$ XARD	2	-	2	-	nCK	
		MR12 = 1		6 - AL	-	6-AL	-		
	Exit Precharge power-down and active power-down to any non-Read command		${ }^{\text {t }} \mathrm{XP}$	2	-	2	-	nCK	
	CKE Minimum HIGH/LOW pulse width		${ }^{\text {t }}$ CKE	3	-	3	-	nCK	28
$\begin{aligned} & \text { O} \\ & \text { O} \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	ODT to powerdown entry latency		${ }^{\text {t }}$ ANPD	3	-	3	-	nCK	
	ODT power-down exit latency		${ }^{\text {t }}$ AXPD	8	-	8	-	nCK	
	ODT turn-on delay		${ }^{\text {t }}$ AOND	2	2	2	2	nCK	
	ODT turn-off delay		${ }^{\text {t }}$ AOFD	2.5	2.5	2.5	2.5	nCK	29
	ODT turn-on		${ }^{\text {t }} \mathrm{AON}$	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{AC} \mathrm{Min} \\ \mathrm{Max}={ }^{\mathrm{t}} \mathrm{AC} \mathrm{Max}+1000 \end{gathered}$				ps	30
	ODT turn-off		${ }^{\text {t }} \mathrm{AOF}$	$\begin{gathered} \operatorname{Min}={ }^{t} A C \operatorname{Min} \\ \operatorname{Max}={ }^{t} A C \text { Max }+600 \end{gathered}$				ps	29,31
	ODT turn-on (power-down mode)		${ }^{\text {t }}$ AONPD	$\begin{gathered} \operatorname{Min}={ }^{t} \mathrm{AC} \operatorname{Min}+2000 \\ \operatorname{Max}=2000 \times{ }^{\mathrm{t}} \mathrm{CK}+{ }^{\mathrm{t}} \mathrm{AC} \mathrm{Max}+1000 \end{gathered}$				ps	
	ODT turn-off (power-down mode)		${ }^{\text {t }}$ AOFPD	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{AC} \mathrm{Min}+2000 \\ \mathrm{Max}=2500 \mathrm{x}^{\mathrm{t}} \mathrm{CK}+{ }^{\mathrm{t}} \mathrm{AC} \mathrm{Max}+1000 \end{gathered}$				ps	
	OCD drive mode output delay		${ }^{\text {t }}$ OIT	-	12	-	12	ns	

< Timing Parameters by Speed Grade - DDR2-667/800/1066 (1) >

Speed			DDR2-667		DDR2-800		DDR2-1066		Units	Notes
Parameter		Symbol	Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { 등 } \\ & \text { 응 } \end{aligned}$	Clock cycle time	${ }^{\text {t }} \mathrm{CK}$ (Avg)	3.0	8.0	2.5	8.0	1.875	7.5	ns	1,2,33
	CK HIGH-level width	${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$	$\begin{aligned} & \operatorname{Min}=0.48 \\ & \operatorname{Max}=0.52 \end{aligned}$						${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg}$)	33
	CK LOW-level width	${ }^{\text {t }} \mathrm{CL}$ (Avg)								
	Half clock period	${ }^{\text {t }} \mathrm{HP}$	$\begin{gathered} \text { Min }=\text { lesser of }{ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Abs}) \text { Min and }{ }^{\mathrm{t}} \mathrm{CL}(\mathrm{Abs}) \mathrm{Min} \\ \mathrm{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$						ps	33
	Absolute ${ }^{\text {t }} \mathrm{CK}$	${ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Abs})$	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg}) \mathrm{Min}+{ }^{\mathrm{t}} \mathrm{JT} \text { per } \operatorname{Min} \\ \mathrm{Max}={ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg}) \mathrm{Max}+{ }^{\mathrm{t}} \mathrm{JTper} \operatorname{Max} \end{gathered}$						ps	33
	Absolute CK HIGH-level width	${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Abs})$							ps	33
	Absolute CK LOW-level width	${ }^{\mathrm{t}} \mathrm{CL}$ (Abs)	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg}) \operatorname{Min} \times{ }^{\mathrm{t}} \mathrm{CL}(\mathrm{Avg}) \operatorname{Min}+{ }^{\mathrm{t}} \mathrm{JTdty} \operatorname{Min} \\ \mathrm{Max}={ }^{\mathrm{t}} \mathrm{CK}(\text { Avg }) \operatorname{Max} \times{ }^{\mathrm{t}} \mathrm{CL}(\text { (Avg }) \text { Max }+{ }^{\mathrm{t}} \mathrm{JTdty} \operatorname{Max} \end{gathered}$						ps	33
	DQS output access time from CK/CK\#	${ }^{\text {t DQSCK }}$	-400	400	-350	350	-325	325	ps	32,33
	DQS Read preamble	${ }^{\text {t RPRE }}$	0.9	1.1	0.9	1.1	0.9	1.1	${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg})$	33,34
	DQS Read postamble	${ }^{\text {t RPST }}$	0.4	0.6	0.4	0.6	0.4	0.6	${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg})$	33,35
	CK/CK\# to DQS Low-Z	${ }^{\text {L LZ(}}$ (DQS)	$\begin{aligned} \operatorname{Min} & ={ }^{\mathrm{A}} \mathrm{AC} \operatorname{Min} \\ \mathrm{Max} & ={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Max} \end{aligned}$						${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg})$	5,6
	DQS rising edge to CK rising edge	${ }^{\text {t }}$ DQSS	-0.25	0.25	-0.25	0.25	0.35	0.25	${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg})$	36
	DQS input-high pulse width	${ }^{\text {t }}$ DQSH	$\begin{aligned} & \operatorname{Min}=0.35 \\ & \operatorname{Max}=\mathrm{N} / \mathrm{A} \end{aligned}$						${ }^{\text {t }} \mathrm{CK}$ (Avg)	
	DQS input-low pulse width	${ }^{\text {t }}$ DQSL							${ }^{\text {t }} \mathrm{CK}$ (Avg)	
	DQS falling to CK rising: setup time	${ }^{\text {t }}$ DSS	$\begin{aligned} \operatorname{Min} & =0.2 \\ M a x & =N / A \end{aligned}$						${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg}$)	36
	DQS falling from CK rising: hold time	${ }^{\text {t }}$ DSH							${ }^{\text {t }} \mathrm{CK}$ (Avg)	36
	DQS write preamble	${ }^{\text {t }}$ WPRE	0.35	-	0.35	-	0.35	-	${ }^{\text {t }} \mathrm{CK}($ (Avg $)$	
	DQS write postamble	${ }^{\text {t WPST }}$	0.4	0.6	0.4	0.6	0.4	0.6	${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg})$	7
	WRITE command to first DQS transition		$\begin{aligned} & \text { Min }=\text { WL }+{ }^{\text {t}} \mathrm{DQSS} \text { Min } \\ & \text { Max } \end{aligned}=\mathrm{WL}+{ }^{\mathrm{t}} \mathrm{DQSS} \text { Max }$						${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg})$	
	DQ output access time from CK or /CK	${ }^{\mathrm{t}} \mathrm{AC}$	-450	450	-400	400	-350	350	ps	32
	DQS-DQ skew, DQS to last DQ valid, per group, per access	${ }^{\text {t }}$ DQSQ	-	240	-	200	-	175	ps	8
	DQ hold from next DQS strobe	${ }^{\text {t }}$ QHS	-	340	-	300	-	250	ps	9
	DQ-DQS hold, DQS to first DQ not valid	${ }^{\text {t }}$ QH	$\begin{gathered} \mathrm{Min}=\mathrm{t} H P-\mathrm{tQHS} \\ \mathrm{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$						ps	8
	CK/CK\# to DQ, DQS High-Z	${ }^{\text {t }} \mathrm{HZ}$	$\begin{gathered} \operatorname{Min}=\mathrm{N} / \mathrm{A} \\ \operatorname{Max}={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Max} \end{gathered}$						ps	$\begin{gathered} 5,10,3 \\ 2 \end{gathered}$
	CK/CK\# to DQ Low-Z	${ }^{\text {t }} \mathrm{Z}$ (DQ)	$\begin{gathered} \operatorname{Min}=2 x^{t} A C M i n \\ M a x={ }^{t} A C \text { Max } \end{gathered}$						ps	$\begin{array}{\|c} 5,11,3 \\ 2 \end{array}$
	Data valid output window	DVW	$\begin{gathered} \mathrm{Min}={ }^{\mathrm{t}} \mathrm{QH}-{ }^{\mathrm{t}} \mathrm{DQSQ} \\ \mathrm{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$						ps	8
	DQ and DM input setup time	${ }^{\text {t }}$ DS(base)	100	-	50	-	0	-	ps	$\begin{array}{\|c} \hline 1,12,1 \\ 3,15,3 \\ 2 \\ \hline \end{array}$
	DQ and DM input hold time	${ }^{\text {t }}$ DH(base)	175	-	125	-	75	-	ps	$\begin{gathered} \hline 1,12,1 \\ 4,15,3 \\ 2 \\ \hline \end{gathered}$
	DQ and DM input pulse width	${ }^{\text {t }}$ IPW	0.35	-	0.35	-	0.35	-	${ }^{\text {t }} \mathrm{CK}($ Avg $)$	
	Input setup time	${ }^{\text {I }}$ (base)	200	-	175	-	125	-	ps	$\begin{gathered} \hline 1,12,3 \\ 8,39 \\ \hline \end{gathered}$
	Input hold time	${ }^{\text {t }} \mathrm{H}$ (base)	275	-	250	-	200	-	ps	$\begin{array}{\|c\|} \hline 1,12,1 \\ 9,39 \\ \hline \end{array}$
	Input pulse width	${ }^{\text {t }}$ PW	0.6	-	0.6	-	0.6	-	${ }^{\text {t }} \mathrm{CK}(\mathrm{Avg})$	
	Activate to Activate delay same bank	${ }^{\text {t }} \mathrm{RC}$	60	-	60	-	58.125	-	ns	20,21
	Activate to Read or Write delay	${ }^{\text {t }} \mathrm{RCD}$	15	-	15	-	13.125	-	ns	

< Timing Parameters by Speed Grade - DDR667/800/1066 (2) >

Speed				DDR2-667		DDR2-800		DDR2-1066		Units	Notes
Parameter			Symbol	Min	Max	Min	Max	Min	Max		
	Activate to Precharge delay		${ }^{\text {t RAS }}$	45	70,000	45	70,000	45	70,000	ns	22,23
	Precharge period		tRP	15	-	15	-	13.125	-	ns	24
	Precharge All period	<1Gb	'RPA	15	-	15	-	13.125	-	ns	24
	Precharge All period	$\geq 1 \mathrm{~Gb}$		18	-	17.5	-	15	-		
	Activate to Activate delay different	x4, x8	tRRD	7.5	-	7.5	-	7.5	-	ns	25
	bank	$\times 16$		10	-	10	-	10	-		
	4-bank activate period ($\geq 1 \mathrm{~Gb}$)	x4, x8	${ }^{\text {t }}$ AW	37.5	-	35	-	35	-	ns	22,25
		$\times 16$		50	-	45	-	45	-		
	Internal Read to Precharge delay		${ }^{\text {tRTP }}$	7.5	-	7.5	-	7.5	-	ns	
	/CAS to /CAS delay		${ }^{\text {t }}$ CCD	2	-	2	-	2	-	nCK	
	Write recovery time		${ }^{\text {t }}$ WR	15	-	15	-	15	-	ns	
	Write Auto-precharge recovery + precharge time		${ }^{\text {t }}$ DAL	$\begin{gathered} \operatorname{Min}={ }^{t} W R M i n+{ }^{t} R P M i n \\ M a x=N / A \end{gathered}$						nCK	26
	Internal Write to Read delay		${ }^{\text {t }}$ WTR	7.5	-	7.5	-	7.5	-	ns	25
	Mode register set command cycle time		${ }^{\text {m MRD }}$	2	-	2	-	2	-	nCK	
	Refresh to Activate or to Refresh interval	256Mb	${ }^{\text {traC }}$	75	-	75	-	75	-	ns	27
		512 Mb		105	-	105	-	105	-		
		1 Gb		127.5	-	127.5	-	127.5	-		
		2Gb		195	-	195	-	195	-		
		4Gb		327.5	-	327.5	-	327.5	-		
	Average periodic refresh ($\left.0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {CASE }} \leq 85^{\circ} \mathrm{C}\right)$		REFI	7.8	-	7.8	-	7.8	-	ns	27
	Average periodic refresh ($85^{\circ} \mathrm{C}<\mathrm{T}_{\text {CASE }} \leq 95^{\circ} \mathrm{C}$)			3.9	-	3.9	-	3.9	-		
	Clocks remains ON after CKE asynchronously drops LOW		${ }^{\text {t }}$ LELAY	$\begin{gathered} \mathrm{Min}={ }^{\mathrm{I}} \mathrm{IS}+{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})+{ }^{\mathrm{t} I \mathrm{H}} \\ \mathrm{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$						ns	
	Exit Self Refresh to non-Read command		${ }^{\text {t }}$ XSNR	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{RFC} \operatorname{Min}+10 \\ \operatorname{Max}=\mathrm{N} / \mathrm{A} \end{gathered}$						ns	
	Exit Self Refresh to Read command		${ }^{\text {t } X \text { SRD }}$	200	-	200	-	200	-	nCK	
	Exit active powerdown to Read	MR12 =0	${ }^{\text {t }}$ XARD	2	-	2		2	-	nCK	
	command	MR12 = 1		7-AL	-	8-AL	-	10-AL	-		
	Exit Precharge power-down and active powerdown to any non-Read command		${ }^{\text {t }} \mathrm{XP}$	2	-	2	-	3	-	nCK	
	CKE Minimum HIGH/LOW pulse width		${ }^{\text {t }}$ CKE	3	-	3	-	3	-	nCK	28
	ODT to powerdown entry latency		${ }^{\text {t }}$ ANPD	3	-	3	-	4	-	nCK	
	ODT power-down exit latency		${ }^{\text {t }}$ AXPD	8	-	8	-	11	-	nCK	
	ODT turn-on delay		${ }^{\text {t }}$ AOND	2	2	2	2	2	2	nCK	16
	ODT turn-off delay		${ }^{\text {t }}$ AOFD	2.5	2.5	2.5	2.5	2.5	2.5	nCK	41
	ODT turn-on		${ }^{\text {t }} \mathrm{AON}$	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Min} \\ \operatorname{Max}={ }^{\mathrm{t} A C} \operatorname{Max}+700 \end{gathered}$				$\begin{gathered} \operatorname{Min}=\text { tAC Min } \\ \operatorname{Max}=\text { tAC Max }+ \\ 2575 \end{gathered}$		ps	30
	ODT turn-off		${ }^{\text {t }} \mathrm{AOF}$	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Min} \\ \mathrm{Max}={ }^{\mathrm{A}} \mathrm{AC} \operatorname{Max}+600 \end{gathered}$						ps	31,41
	ODT turn-on (power-down mode)		${ }^{\text {t }}$ AONPD	$\begin{gathered} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{ACM} \operatorname{Min}+2000 \\ \operatorname{Max}=2000 \times{ }^{\mathrm{t}} \mathrm{CK}+{ }^{\mathrm{t}} \mathrm{AC} \operatorname{Max}+1000 \end{gathered}$				$\begin{array}{rl} \operatorname{Min}={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Min} \\ & +2000 \\ \mathrm{Max}= & 3000 \mathrm{x}^{\mathrm{t}} \mathrm{CK} \\ ++^{\mathrm{t} A C} & \mathrm{Aax}+1000 \end{array}$		ps	
	ODT turn-off (power-down mode)		${ }^{\text {t }}$ AOFPD	$\begin{gathered} \operatorname{Min}={ }^{t} \mathrm{AC} \operatorname{Min}+2000 \\ \operatorname{Max}=2500 x^{\mathrm{t}} \mathrm{CK}+{ }^{\mathrm{t}} \mathrm{AC} \operatorname{Max}+1000 \end{gathered}$						ps	
	OCD drive mode output delay		${ }^{\text {t }}$ OIT	-	12	-	12	-	12	ns	

< Specific Notes for AC parameters >

1. CK and /CK input slew rate is referenced at $1 \mathrm{~V} / \mathrm{ns}$ ($2 \mathrm{~V} / \mathrm{ns}$ if measured differentially).
2. The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during precharge power-down.
3. ${ }^{\mathrm{t}} \mathrm{CL}$ Min, ${ }^{\mathrm{t}} \mathrm{CH}$ Min refer to the smaller of the actual clock LOW time and the actual clock HIGH time driven to the device. The clock's half period must also be of a Gaussian distribution; ${ }^{{ }^{\mathrm{C}} \mathrm{CH}(\mathrm{Avg}) \text { and }{ }^{\mathrm{t}} \mathrm{CL}(\mathrm{Avg}) \text { must be }}$ met with or without clock jitter and with or without duty cycle jitter. ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$ and ${ }^{\mathrm{t}} \mathrm{CL}(\mathrm{Avg})$ are the average of any 200 consecutive CK falling edges. ${ }^{\text {t }}$. the absolute half period limits (${ }^{(} \mathrm{CH}(\mathrm{Abs}),{ }^{\mathrm{t}} \mathrm{CL}(\mathrm{Abs})$) are not violated.
4. This parameter is not referenced to a specific voltage level but is specified when the device output is no longer driving ('RPST) or beginning to drive ('RPRE).
5. ${ }^{\mathrm{t}} \mathrm{HZ}$ and t LZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving ('HZ) or begins driving ('LZ).
6. ${ }^{\mathrm{t}} \mathrm{ZZ}$ Min will prevail over a ${ }^{\mathrm{t}} \mathrm{DQSCK}$ Min $+{ }^{\mathrm{t}} \mathrm{RPRE}$ Max condition.
7. The intent of the "Don't Care" state after completion of the postamble is that the DQS-driven signal should either be HIGH, LOW, or High-Z, and that any signal transition within the input switching region must follow valid input requirements. That is, if DQS transitions HIGH (above $\mathrm{V}_{\mathrm{IH}}(\mathrm{DC})$ Min), then it must not transition LOW (below $\mathrm{V}_{\mathrm{IH}}(\mathrm{DC})$) prior to ${ }^{\mathrm{t}} \mathrm{DQSH}$ Min.
8. The data valid window is derived by achieving other specifications: ${ }^{\mathrm{t}} \mathrm{HP}\left({ }^{(} \mathrm{CK} / 2\right)$, ${ }^{\mathrm{t}} \mathrm{DQSQ}$, and ${ }^{\mathrm{t} Q \mathrm{QH}}$ (${ }^{\mathrm{t} Q H}={ }^{\mathrm{t}} \mathrm{HP}$ ${ }^{\mathrm{t}} \mathrm{QHS}$). The data valid window derates in direct proportion to the clock duty cycle and a practical data valid window can be derived.
9. ${ }^{\mathrm{t}} \mathrm{QH}={ }^{\mathrm{t}} \mathrm{HP}-{ }^{\mathrm{t}} \mathrm{QHS}$, where: ${ }^{\text {tHP }}=$ minimum half clock period for any given cycle and is defined by clock HIGH or clock LOW (${ }^{\mathrm{t}} \mathrm{CH},{ }^{\mathrm{t}} \mathrm{CL}$).
10.This maximum value is derived from the referenced test load. ${ }^{\mathrm{t}} \mathrm{HZ}$ Max will prevail over ${ }^{\text {tD DSSCK Max }+}$ tRPST Max condition.
10. ${ }^{\text {tLZ }}$ Min will prevail over a ${ }^{\text {tD }}$ DQSCK Min $+{ }^{\text {tRPRE Max condition. }}$
11. Timings are guaranteed for DQs, DM, and DQS input with a differential slew rate of $2.0 \mathrm{~V} / \mathrm{ns}$ in differential strobe mode and a slew rate of $1 \mathrm{~V} / \mathrm{ns}$ in single ended mode. Refer to the System Derating for other slew rate values.
12. Input waveform timing with differential data strobe enabled $\operatorname{MR[bit10]}=0$, is referenced from the input signal crossing at the $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})$ level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the $\mathrm{V}_{\mathrm{LL}}(\mathrm{AC})$ level to the differential data strobe crosspoint for a falling signal.
13. Input waveform timing with differential data strobe enabled $\operatorname{MR[bit10]}=0$, is referenced from the input signal crossing at the $\mathrm{V}_{\mathrm{IH}}(\mathrm{DC})$ level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the V_{IL} (DC) level to the differential data strobe crosspoint for a falling signal.
14. If ${ }^{\mathrm{t}} \mathrm{DS}$ or ${ }^{t} \mathrm{DH}$ is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. Regarding $\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{IH}}$ overshoot/undershoot, please see AC Overshoot/Undershoot Specification in the page 8.
15. Input waveform timing with single-ended strobe enabled MR[bit10] $=1$, is referenced from the input signal crossing at the $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})$ level to the single-ended data strobe crossing $\mathrm{V}_{\mathrm{IH} /}(\mathrm{AC})$ at the end of its transition for a rising signal, and from the input signal crossing at the $\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})$ level to the single-ended data strobe crossing $\mathrm{V}_{\mathrm{IHL}}(\mathrm{DC})$ at the start of its transition for a falling signal.
16. Input waveform timing with single-ended strobe enabled MR[bit10] $=1$, is referenced from the input signal crossing at the $\mathrm{V}_{\mathrm{IH}}(\mathrm{DC})$ level to the single-ended data strobe crossing $\mathrm{V}_{\mathrm{IH} /}(\mathrm{DC})$ at the end of its transition for a rising signal, and from the input signal crossing at the $\mathrm{V}_{\mathrm{IL}}(\mathrm{DC})$ level to the single-ended data strobe crossing $\mathrm{V}_{\mathrm{IHL}}(\mathrm{AC})$ at the start of its transition for a falling signal.
17. Timings are specified with command/address input slew rate of $1.0 \mathrm{~V} / \mathrm{ns}$. See System Derating for other slew rate values.
18. Input waveform timing is referenced from the input signal crossing at the $\mathrm{V}_{\mathrm{IL}}(\mathrm{DC})$ level for a rising signal and $\mathrm{V}_{\mathrm{HH}}(\mathrm{DC})$ for a falling.
19. This is applicable to READ cycles only. WRITE cycles generally require additional time due to ${ }^{\text {tW }}$ WR during Auto-precharge.
20. DRAM devices should be evenly addressed when being accessed. Disproportionate accesses to a particular row address may result in reduction of the product lifetime.
21. This is a minimum requirement. Minimum read to precharge timing is $\mathrm{AL}(E M R$ bit[5:3]) $+\mathrm{BL} / 2$ providing the ${ }^{\mathrm{t}}$ RTP and ${ }^{\mathrm{t} R A S}$ Min have been satisfied.
22. READs and WRITEs with Auto-precharge are allowed to be issued before tRAS Min is satisfied because ${ }^{\text {tR}}$ RAS lockout feature is supported in DDR2 SDRAM.
23. When a single-bank Precharge command is issued, tRP timing applies. tRPA timing applies when the Precharge (ALL) command is issued, regardless of the number of banks open. For 8 -bank devices ($\geq 1 \mathrm{~Gb}$),

24. This parameter has a two clock minimum requirement at any ${ }^{\text {t}}{ }^{1}$.
25. ${ }^{\mathrm{t} D A L}=(\mathrm{nWR})+\left({ }^{\mathrm{t} R P / t} \mathrm{CK}\right)$: For each of the terms above, if not already an integer, round to the next highest integer. ${ }^{\text {t }}$ CK refers to the application clock period. nWR refers to the 'WR parameter stored in the MR9MR11.

Example: for DDR533 at ${ }^{\text {TCK }}=3.75$ ns with tWR programmed to 4 clocks. ${ }^{\text {tDAL }}=4+$ ($15 \mathrm{~ns} / 3.75 \mathrm{~ns}$)clocks $=4+4$ clocks $=8$ clocks.
27. If refresh timing is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
28. ${ }^{\text {tCKE Min }} 3$ of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of ${ }^{\mathrm{t} I S}+2 \times{ }^{\mathrm{t}} \mathrm{CK}+{ }^{\mathrm{t} / \mathrm{H}}$.
29. For ${ }^{\mathrm{t}}$ AOFD of DDR2-400/533, the $1 / 2$ clock of ${ }^{\mathrm{t}} \mathrm{CK}$ in the $2.5 \mathrm{x}^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$ assumes a ${ }^{\mathrm{t}} \mathrm{CH}$, input clock HIGH pulse width of 0.5 relative to ${ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$. ${ }^{\mathrm{t}} \mathrm{AOF}$ Min and ${ }^{\mathrm{t}} \mathrm{AOF}$ Max should each be derated by the same amount as the actual amount of ${ }^{\mathrm{t}} \mathrm{CH}$ offset present at the DRAM input with respect to 0.5 .

For example, if an input clock has a worst case ${ }^{\mathrm{t}} \mathrm{CH}$ of 0.45 , the ${ }^{\mathrm{t} A O F}$ Min should be derated by subtracting $0.05 \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$ from it, whereas if an input clock has a worst case ${ }^{\mathrm{t}} \mathrm{CH}$ of 0.55 , the ${ }^{\mathrm{t}} \mathrm{AOF}$ Max should be derated by adding $0.05 \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$ to it. Therefore, we have;
${ }^{\mathrm{t}} \mathrm{AOF}$ Min $($ derated $)={ }^{\mathrm{t} A C} \operatorname{Min}-\left[0.5-\operatorname{Min}\left(0.5,{ }^{\mathrm{t}} \mathrm{CH} \mathrm{Min}\right)\right] \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$
${ }^{\mathrm{t}} \mathrm{AOF}$ Max (derated) $={ }^{\mathrm{t}} \mathrm{AC} \operatorname{Max}+0.6+\left[\operatorname{Max}\left(0.5,{ }^{\mathrm{t}} \mathrm{CH}\right.\right.$ Max) -0.5$] \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$
or
${ }^{\mathrm{t}} \mathrm{AOF} \operatorname{Min}$ (derated) $=\operatorname{Min}\left({ }^{\mathrm{t} A C} \operatorname{Min},{ }^{\mathrm{t} A C} \operatorname{Min}-\left[0.5-{ }^{\mathrm{t}} \mathrm{CH} \mathrm{Min}\right] \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})\right)$

where ${ }^{\mathrm{t}} \mathrm{CH}$ Min and ${ }^{\mathrm{t}} \mathrm{CH}$ Max are the minimum and maximum of ${ }^{\mathrm{t}} \mathrm{CH}$ actually measured at the DRAM input balls.
30. ODT turn-on time ${ }^{\mathrm{t}} \mathrm{AON}$ Min is when the device leaves High-Z and ODT resistance begins to turn on. ODT turn-on time ${ }^{t} A O N$ Max is when the ODT resistance is fully on. Both are measured from ${ }^{t}$ AOND.
31. ODT turn-off time ${ }^{\text {t}} \mathrm{AOF}$ Min is when the device starts to turn off ODT resistance. ODT turn off time ${ }^{\mathrm{t}} \mathrm{AOF}$ Max is when the bus is in High-Z. Both are measured from ${ }^{\mathrm{t}}$ AOFD.
32. When the device is operated with input clock jitter, this parameter needs to be derated by the actual ${ }^{\text {t}}$ ERR(6~10per) of the input clock.

For example, if the measured jitter into a DDR2-667 has ${ }^{\text {tERR }}$ ($6 \sim 10 \mathrm{per}$) Min $=-272 \mathrm{ps}$ and ${ }^{t} E R R(6 \sim 10$ per $) ~ M a x=+293 p s, ~ t h e n ~ t D Q S C K ~ M i n(d e r a t e d) ~=~ t D Q S C K ~ M i n ~-~ ' E R R(6 ~ 10 p e r) ~ M a x ~=~-~$
400ps -293 ps $=-693$ ps and ${ }^{\text {tDQSCK }}$ Max(derated) $={ }^{\text {tDQSCK }}$ Max - tERR(6~10per) $\operatorname{Min}=400$ ps + $272 \mathrm{ps}=+672 \mathrm{ps}$.
Similarly, tZZ(DQ) for DDR2-667 derates to tLZ(DQ) Min(derated) $=-900$ ps $-293 p s=-1193 p s$ and t LZ(DQ) Max(derated) $=450 \mathrm{ps}+272 \mathrm{ps}=+722 \mathrm{ps}$.
33. Input clock jitter spec parameter. These parameters and the ones in the table below are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2-667, DDR2-800, and DDR2-1066 only. The jitter specified is a random jitter meeting a Gaussian distribution.

Parameters	Symbol	DDR2-667		DDR2-800		DDR2-1066		Units
		Min	Max	Min	Max	Min	Max	
Clock period jitter	${ }^{\text {t }}$ IT ${ }^{\text {(per) }}$	-125	125	-100	100	-90	90	ps
Clock period jitter during DLL locking period	tJIT(per_lck)	-100	100	-80	80	-80	80	ps
Cycle to cycle clock period jitter	${ }^{\text {t }}$ IT (cc)	-250	250	-200	200	-180	180	ps
Cycle to cycle clock period jitter during DLL locking period	tJIT(cc_Ick)	-200	200	-160	160	-160	160	ps
Cumulative error across 2 cycles	${ }^{\text {t }}$ ERR(2per)	-175	175	-150	150	-132	132	ps
Cumulative error across 3 cycles	${ }^{\text {t }}$ (RR (3per)	-225	225	-175	175	-157	157	ps
Cumulative error across 4 cycles	${ }^{\text {t }}$ ERR(4per)	-250	250	-200	200	-175	175	ps
Cumulative error across 5 cycles	${ }^{\text {tERR}}$ (5per)	-250	250	-200	200	-188	188	ps
Cumulative error across n cycles, $\mathrm{n}=6 \ldots 10$	${ }^{\text {t }}$ ERR(6~10per $)$	-350	350	-300	300	-250	250	ps
Cumulative error across n cycles, $\mathrm{n}=11 \ldots 50$	${ }^{\text {t }}$ ERR(11~50per $)$	-450	450	-450	450	-425	425	ps
Duty cycle jitter	${ }^{\text {t }}$ IT (duty)	-125	125	-100	100	-75	75	ps

34. When the device is operated with input clock jitter, this parameter needs to be derated by the actual t ITT(per) of the input clock.

For example, if the measured jitter into a DDR2-667 has ${ }^{\mathrm{t}} \mathrm{IIT}$ (per) $\operatorname{Min}=-72$ ps and ${ }^{\mathrm{t}} \mathrm{JIT}$ (per) $\mathrm{Max}=$ +93 ps, then tRPRE Min(derated) $=$ tRPRE Min $+{ }^{\text {tJIT(per) }}$ Min $=0.9 \times{ }^{\text {t }}$ CK(Avg) $-72 \mathrm{ps}=+2178 \mathrm{ps}$ and

35. When the device is operated with input clock jitter, this parameter needs to be derated by the actual ${ }^{\text {t IIT }}$ (duty) of the input clock.

For example, if the measured jitter into a DDR2-667 has ${ }^{\mathrm{t} I T}$ (duty) Min $=-72 \mathrm{ps}$ and tIIT (duty) Max $=$ +93 ps , then ${ }^{\text {tRPST }}$ Min(derated) $={ }^{\text {tRPST }}$ Min $+{ }^{\text {t }}$ IIT(duty) Min $=0.4 \times{ }^{\text {t }}$ CK(Avg) $-72 \mathrm{ps}=+928 \mathrm{ps}$ and

36. These parameters are measured from a data strobe signal crossing to its respective clock signal crossing. The spec values are not affected by the amount of clock jitter applied as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
37. These parameters are measured from a data signal transition edge to its respective data strobe signal crossing.
38. Input waveform timing is referenced from the input signal crossing at the $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})$ level for a rising signal and $\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})$ for a falling.
39. These parameters are measured from a command/address signal transition edge to its respective clock signal crossing. The spec values are not affected by the amount of clock jitter applied, as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.
40. When the device is operated with input clock jitter, this parameter needs to be derated by $\{-\mathrm{tJIT}($ duty $)$ Max ${ }^{t} E R R(6 \sim 10 p e r)$ Max\} and $\left\{{ }^{-1} \mathrm{JIT}\right.$ (duty) Min - ${ }^{\text {teRRR(6~10per) Min\} of the actual input clock. }}$

For example, if the measured jitter into a DDR2-667 has tERR(6~10per) Min =-272ps, tERR(6~10per) Max $=+293 \mathrm{ps}$, ${ }^{\mathrm{t}}$ ITT(duty) Min $=-106$ ps and ${ }^{\mathrm{t}} \mathrm{IIT}$ (duty) Max $=+94 \mathrm{ps}$, then ${ }^{\mathrm{t}} \mathrm{AOF}$ Min(derated) $=^{\mathrm{t}} \mathrm{AOF}$ $\mathrm{Min}+\{-\mathrm{JIIT}$ (duty) Max -t ERR($6 \sim 10 \mathrm{per}$) Max $\}=-450 \mathrm{ps}+\{-94 \mathrm{ps}-293 \mathrm{ps}\}=-837 \mathrm{ps}$ and ${ }^{\mathrm{t} A O F}$ $\operatorname{Max}($ derated $)={ }^{\mathrm{t}} \mathrm{AOF}$ Max $+\left\{\mathrm{-}^{\mathrm{t} I \mathrm{I}}\right.$ (duty) $\mathrm{Min}-\operatorname{tERR}(6 \sim 10$ per) Min$\}=1050 \mathrm{ps}+\{106 \mathrm{ps}+272 \mathrm{ps}\}=$ $+1428 p s$.
41. For ${ }^{\text {t }}$ AOFD of DDR2-667/800/1066, the $1 / 2$ clock of ${ }^{\mathrm{t}} \mathrm{CK}$ in the $2.5 \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$ assumes a ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$, input clock HIGH pulse width of 0.5 relative to ${ }^{\text {t }}$ CK(Avg). ${ }^{\text {t } A O F ~ M i n ~ a n d ~}{ }^{\mathrm{t}} \mathrm{AOF}$ Max should each be derated by the same amount as the actual amount of ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$ offset present at the DRAM input with respect to 0.5 .

For example, if an input clock has a worst case ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$ of 0.48 , the ${ }^{\mathrm{t} A O F}$ Min should be derated by subtracting $0.02 \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$ from it, whereas if an input clock has a worst case ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$ of 0.52 , the ${ }^{\mathrm{t}} \mathrm{AOF}$ Max should be derated by adding $0.02 \times{ }^{\mathrm{t}} \mathrm{CK}$ to it. Therefore, we have;
${ }^{\mathrm{t}} \mathrm{AOF} \operatorname{Min}$ (derated) $={ }^{\mathrm{t}} \mathrm{AC}$ Min $-\left[0.5-\mathrm{Min}\left(0.5,{ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg}) \mathrm{Min}\right)\right] \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$
${ }^{\text {t} A O F ~ M a x ~(d e r a t e d) ~}={ }^{\text {tAC }} \operatorname{Max}+0.6+\left[\operatorname{Max}\left(0.5,{ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg}) \mathrm{Max}\right)-0.5\right] \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})$
or
${ }^{\mathrm{t}} \mathrm{AOF}$ Min (derated) $=\mathrm{Min}\left({ }^{\mathrm{t}} \mathrm{AC}\right.$ Min, $\left.{ }^{\mathrm{A} A C} \operatorname{Min}-\left[0.5-{ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg}) \mathrm{Min}\right] \times{ }^{\mathrm{t}} \mathrm{CK}(\mathrm{Avg})\right)$

where ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$ Min and ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$ Max are the minimum and maximum of ${ }^{\mathrm{t}} \mathrm{CH}(\mathrm{Avg})$ actually measured at the DRAM input balls.

Note that these deratings are in addition to the ${ }^{\mathrm{t}} \mathrm{AOF}$ derating per input clock jitter. However ${ }^{\mathrm{t}} \mathrm{AC}$ values used in the equations shown above are from the timing parameter table and are not derated. Thus the final derated values for ${ }^{\mathrm{t}} \mathrm{AOF}$ are;

