microSDカード TLC:64-256GB aTLC:16-128GB

(ET1289+SanDisk BiCS5 3D-TLC)

データシート

株式会社アドテック

REVISION HISTORY

Revision	Description	Date
V1.0	New release	July 2023

1. Product Introduction

1.1. Overview

The Industrial microSD Card is designed for demanding industrial applications.

The Industrial microSD Card is compatible with SD 3.0 and provides excellent performance.

The built-in auto ECC function can detect and correct errors during data transfer.

Moreover, the Industrial microSD Card supports Ultra High Speed (UHS) interface transfer mode, provides high write/read data transfer rate, high random IOPS, sudden Power-Fails protection, adaptive static wear-leveling, read/program disturb management, etc.

It was designed to meet the high quality, high reliability, high performance, and versatile environmental requirements.

1.2. Product Features

- Interface: 8 pins microSD standard interface
- Compliant SD Card Specification Ver. 3.01 / 4.1 / 5.1 / 6.1
- Density support:
 - 3D-TLC:64GB~256GB
 - 3D-aTLC (Advanced TLC, single bit per cell TLC): 16GB~128GB
- Bus Speed Mode:
 - DS-Default Speed mode: 3.3V signaling, frequency up to 25MHz, up to 12.5MB/ sec
 - HS-High Speed mode: 3.3V signaling, frequency up to 50MHz, up to 25MB/sec
 - SDR12: 1.8V signaling, frequency up to 25MHz, up to 12.5MB/sec
 - SDR25: 1.8V signaling, frequency up to 50MHz, up to 25MB/sec
 - SDR50: 1.8V signaling, frequency up to 100MHz, up to 50MB/sec
 - SDR104: 1.8V signaling, frequency up to 208MHz, up to 104MB/sec
 - DDR50: 1.8V signaling, frequency up to 50MHz, sampled on both clock edges, up to 50MB/s
- Operating at -25°C to 85°C
- Flash: 3D-TLC NAND Flash (SanDisk BiCS5)
- Controller: ET1289
- Program/Erase Cycle:
 - TLC: 3,000 Cycles
 - aTLC: 30,000 Cycles
- Built-in ECC corrects up to 120bits/1 KB
- Read disturbance management (Auto-Refresh)
- Adaptive wear leveling
- Management of sudden power-fails
- SMART Function support
- aTLC (Advanced TLC, single bit per cell TLC) support, enhance the performance and product endurance

1.3. TBW (Tera Bytes Written)

Capacity	16GB	32GB	64GB	128GB	256GB
TLC	—	—	112.6TB	225.3TB	450.5TB
aTLC	366.9TB	735.3TB	1470.1TB	2932.9TB	-

*The endurance of disk could be varying based on user behavior, NAND endurance cycles, and write amplification factor. It is not guaranteed by flash vendor.

*Client workload by JESD-219A

2. microSD Card Interface Description

2.1 microSD Pin Assignment

Pin #	Name	Туре	SD Description
1	DAT2	I/O	Data Line [Bit2]
2	CD/DAT3	I/O	Card Detect / Data Line [Bit3]
3	CMD	PP	Command / Response
4	VDD	S	Supply Voltage
5	CLK	I	Clock
6	VSS	S	Supply Voltage Ground
7	DAT0	I/O	Data Line [Bit 0]
8	DAT1	I/O	Data Line [Bit 1]

Table 1: SD Bus Mode Pin Definition

Notes:

1) S: power supply; I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers.

2) The extended DAT Lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode, as well, while they are not used. It is defined so, in order to

DAT1-DAT3 lines in input mode, as well, while they are not used. It is defined so, in order to keep compatibility to Multi-media Cards.

3) After power up this line (Pin2) is input with 50Kohm pull-up (can be used for card detection or

SPI mode selection). The pull-up should be disconnected by user,

during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42) command.

Pin #	Name	Туре	SD Description
1	RSV		Reserved
2	CS	I	Chip Select (neg true)
3	DI	Ι	Data In
4	VDD	S	Supply Voltage
5	SCLK	I	Clock
6	VSS	S	Supply Voltage Ground
7	DO	0	Data Out
8	RSV		Reserved

Table 2: SPI Bus Mode Pin Definition

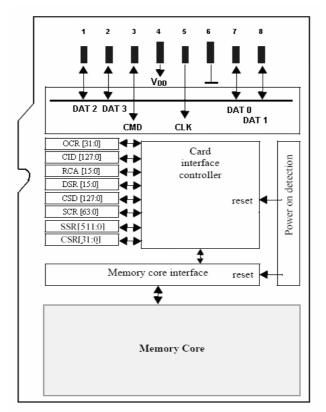


Figure 1: Functional Diagram

3. Specifications

3.1. Performance

Max. Data Transfer Rate

■ Read: 90MB/s; Write: 70MB/s

3.2. NAND Flash Memory

Industrial microSD Card uses Triple Level Cell (TLC) NAND Flash memory, which is non-volatility, high reliability and highspeed memory storage.

3.3. Power Requirement

3.3.1. DC Input Voltage

■ 2.7V to 3.6V

3.4. Temperature Range

■ -25°C to +85°C

3.5. Humidity

Relative Humidity: 5-95%, non-condensing

3.6. Waterproof

Waterproof level: IEC 60529 IPX8.

Test Condition	Referred standard		
Depth of water 1.5m for 30 mins.	IEC 60529 IPX8		

3.7. ESD Ability

Test Condition	Referred standard		
Contact discharge: ± 2KV, ± 4KV	SD Spec. Appendix D.1		
● Air discharge: ± 4KV, ± 8KV, ± 15KV	SD Spec. Appendix D.2		

3.8. Dust proof

Dust proof level: IEC 60529 IP6X.

Test Condition	Referred standard
Depression of 2 KPa, Talcum powder 2kg/m ³ , 8 hrs.	IEC 60529 IP6X

4. Electrical Specifications

4.1 General DC Character

Parameter	Symbol	Min	Max	Unit	Remark
Peak voltage on all lines	_	-0.3	3.6	V	
All input leakage current	_	-10	10	μA	
All output leakage current	_	-10	10	μA	
Supply voltage for low voltage range	Vddl	—	_	V	
Supply voltage for high voltage range	Vddh	2.7	3.6	V	
Supply voltage differential		-0.5	0.5	V	

Table 3: General DC Character

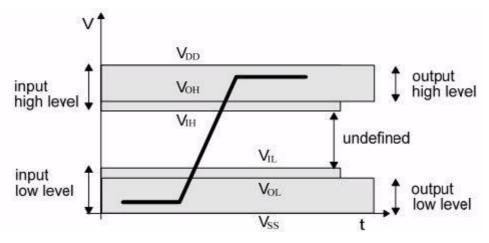
4.2 Bus Signal Line Loading

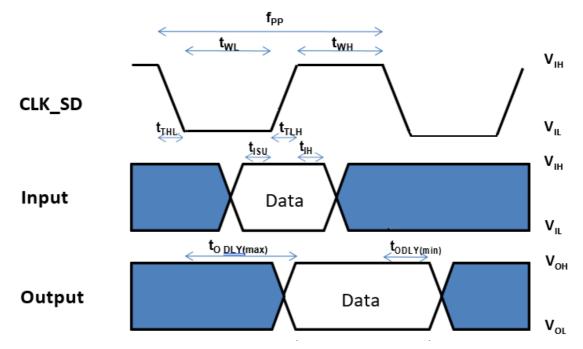
Parameter	Symbol	Min	Max	Unit	Remark
Pull up resistance for SD command line	Rсмр	4.7	100	KΩ	
Pull up resistance for SD data line	Rdat	10	100	KΏ	
Total Bus capacitance for each signal line	CL	_	30	pF	
Signal line inductance	—	—	16	pF	
Pull-up resistance inside card (pin 1)	R dat3	10	150	KΩ	

Table 4: Bus Signal Line Loading

4.3 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.




Figure 4: Bus Signal Levels

Parameter	Symbol	Min	Max	Unit	Remark
Output High Voltage	Vон	2.4	_	V	$V_{DD} = 3.3V$
Output Low Voltage	Vol		0.4	V	$V_{DD} = 3.3V$
Input High Voltage	Vін	2.0	3.6	V	$V_{DD} = 3.3V$
Input Low Voltage	VIL	-0.3	0.8	V	$V_{DD} = 3.3V$
Output High Voltage	Vон	1.4	_	V	Vdd = 1.8V
Output Low Voltage	Vol		0.45	V	Vdd = 1.8V
Input High Voltage	VIH	1.26	2.1	V	$V_{DD} = 1.8V$
Input Low Voltage	VIL	-0.3	0.58	V	$V_{DD} = 1.8V$

Table 5: Bus Signal Level

4.4 Bus Timing (Default Speed Mode)

Figure 5: Timing diagram data input/output referenced to clock (Default Speed Mode)

Table 6: Bus Timing - Parameters Values (Default Speed)							
Parameter	Symbol	Min.	Max.	Unit	Remark		
Input CLK_SD							
Clock frequency data transfer mode	fpp	—	25	MHz	C∟≦ 10pF (1 card)		
Clock frequency Identification mode	fod	_	400	KHz	C∟≦ 10pF (1 card)		
Clock low time / Clock high time	tw∟/twн	10	_	ns	C∟≦ 10pF (1 card)		
Clock rise time / Clock fall time	tтін/tтні	_	10	ns	C∟≦ 10pF (1 card)		
Input CMD_SD/DATA_SD, referenced to CLK	_SD						
Input set-up time	t isu	5	_	ns	C∟≦ 10pF (1 card)		
Input hold time	tıн	5	_	ns	C∟≦ 10pF (1 card)		
Output CMD_SD/DATA_SD, referenced to CLK_SD							
Output Delay time during Data Transfer Mode	todly	_	14	ns	C∟≦ 40pF (1 card)		
Output Delay time during Identification Mode	todly		50	ns	C∟≦ 40pF (1 card)		

able 6: Bus Timing - Parameters Values (Default Speed)

(1) All timing values are measured relative to 50% of voltage level.

(2) Rise and fall times are measured from 10% - 90% of voltage level.

4.5 Bus Timing (High-Speed Mode)

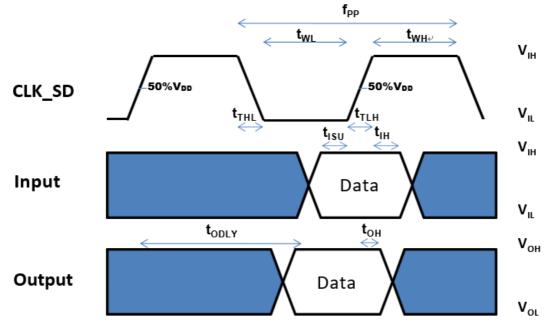


Figure 6: Timing diagram data input/output referenced to clock (High-Speed Mode)

		D		<i></i>
able 7: Bus	I iming -	Parameters	values	(High-Speed)

Table 7: Bus Timing - Parameters Values (High-Speed)						
Parameter	Symbol	Min.	Max.	Unit	Remark	
Input CLK_SD						
Clock frequency data transfer mode	fpp	0	50	MHz	C∟≦ 10pF (1 card)	
Clock low time / Clock high time	tw∟/twн	7	—	ns	$C_{L} \leq 10 pF (1 card)$	
Clock rise time / Clock fall time	tтьн/tтнь		3	ns	C∟≦ 10pF (1 card)	
Input CMD_SD/DATA_SD, referenced to CLK_SD						
Input set-up time	t isu	6	_	ns	$C_{L} \leq 25 pF$ (1 card)	
Input hold time	tıн	2	_	ns	C∟≦ 25pF (1 card)	
Output CMD_SD/DATA_SD, referenced to CLK_SD						
Output Delay time during Data Transfer Mode	todly		14	ns	C∟≦ 40pF (1 card)	
Output hold time	tон	2.5	_	ns	C∟≧ 15pF (1 card)	
Total System capacitance for each line	CL	—	40	pF		

(1) All timing values are measured relative to 50% of voltage level.(2) Rise and fall times are measured from 10% - 90% of voltage level.

Table 8: Bus Timing - Parameters Values (SDR104/SDR50/SDR25/SDR12)							
Parameter	Symbol	Min.	Max.	Unit	Remark		
Input CLK_SD							
Clock frequency data transfer mode	fpp	0	208	MHz	C∟ = 10pF		
Clock cycle time	tclk	4.8	_	ns	C∟ = 10pF		
Clock duty cycle		30	70	%			
Clock rise time / Clock fall time	tтьн/tтнь	_	0.2*t ськ	ns	C∟ = 10pF		
Input CMD_SD/DATA_SD, referenced to CLK_SD							
Input set-up time for SDR104	tisu	1.4	_	ns	C∟ = 10pF		
Input set-up time for SDR50	tisu	3	_	ns	C∟ = 10pF		
Input hold time	tıн	0.8	_	ns	C∟ = 5pF		
Output CMD_SD/DATA_SD, referenced to CLK_SD							
Output Delay time for SDR50	todly	—	7.5	ns	C∟ = 30pF, using driver Type B		
Output Delay time for SDR25 and sdr12	todly	_	14	ns	C∟ = 40pF, using driver Type B		
Output hold time	tон	1.5	_	ns	C∟ = 15pF		
Total System capacitance for each line	CL		40	pF			

able 8: Bus Timing - Parameters Values (SDR104/SDR50/SDR25/SDR12)

4.6 Bus Timing (DDR Mode)

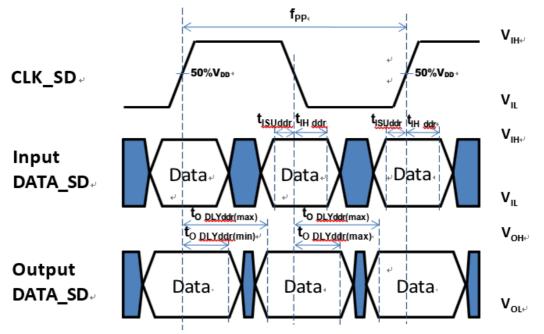


Figure 7: Timing diagram data input/output referenced to clock (DDR Mode)

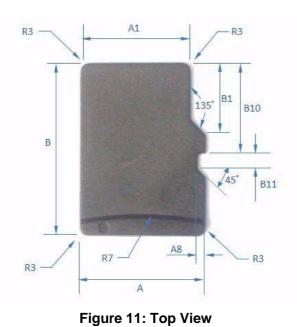

Table 9 : Bus Timing - Parameters values(DDR)							
Parameter	Symbol	Min.	Max.	Unit	Remark		
Input CLK_SD							
Clock duty cycle		45	55	%			
Input CMD_SD, referenced to CLK_SD							
Input set-up time	t isu	3		ns	$C_{L} \leq 10 pF (1 card)$		
Input hold time	tıн	0.8		ns	$C_{L} \leq 10 pF (1 card)$		
Output CMD_SD, referenced to CLK_SD							
Output Delay time during data transfer mode	todly	_	13.7	ns	$C_{L} \leq 30 pF (1 card)$		
Output hold time	tон	1.5		ns	$C_{L} \ge 15 pF (1 card)$		
Input DATA_SD, referenced to CLK_SD							
Input set-up time	t ıs∪ddr	3		ns	$C_{L} \leq 10 pF (1 card)$		
Input hold time	t IHddr	0.8		ns	$C_{L} \leq 10 pF (1 card)$		
Output DATA_SD, referenced to CLK_SD							
Output Delay time during data transfer mode	t ODLYddr		7	ns	$C_{L} \leq 25 pF (1 card)$		
Output hold time	t OHddr	1.5		ns	C∟≧ 15pF (1 card)		

Table 9 : Bus Timing - Paramet	ters Values(DDR)
--------------------------------	------------------

5. Mechanical Dimensions

The mechanical dimensions of industrial microSD card were basically followed the mechanical form factor definitions on microSD card specifications which constructed by SD card association.

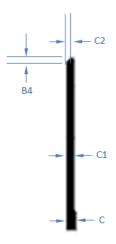


Figure 12: Side View

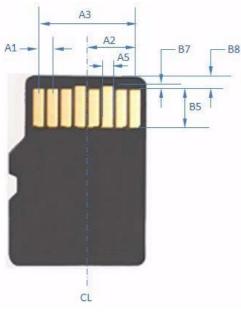


Figure 13: Bottom View

Criteria of microSD				Unit: mm
Dimensions	Min	TYP	Max	Note
А	10.90	11.00	11.10	
A1	9.60	9.70	9.80	
A2		3.85		BASIC
A3	7.60	7.70	7.80	
A4		1.10		BASIC
A5	0.75	0.80	0.85	
A8	0.60	0.70	0.80	
В	14.90	15.00	15.10	
B1	6.13	6.23	6.33	
B4	0.42	0.52	0.62	
B 5	2.80	2.90	3.00	
B 7	0.20	0.30	0.40	
B8	1.00	1.10	1.20	
B10	7.80	7.90	8.00	
B11	1.10	1.20	1.30	
R3	0.70	0.80	0.90	
R 7	29.50	30.00	30.50	
С	0.90	1.00	1.10	
C1	0.60	0.70	0.80	
C2	0.20	0.30	0.40	

6. Ordering Information

Flash Type	Part Number	Capacity	Note
TLC	ADM1U1064G3DEEDES	64GB	
	ADM1U1128G3DEEDES	128GB	
	ADM1U1256G3DEEDES	256GB	
aTLC	ADM1U1016GPDEEDES	16GB	
	ADM1U1032GPDEEDES	32GB	
	ADM1U1064GPDEEDES	64GB	
	ADM1U1128GPDEEDES	128GB	